Engineering Chemistry

Semester No	Code	Credit Hours
2	CH-112	3-0

COURSE DESCRIPTION:

The objective of this course is to impart introductory and applied knowledge about Engineering Chemistry

- 1. Gain sufficient knowledge about atmospheric chemistry, concentration expression, and chemistry of environment.
- 2. Identify working of various electrochemical cells.
- **3**. Estimate heat, enthalpy and entropy associated with various chemical reaction.
- 4. Gain sufficient knowledge of corrosion control techniques.
- 5. Understand the various fuels, polymers and other engineering materials

TEXT AND MATERIAL

Textbooks:

Engineering Chemistry by S. C. Bhatia, 2013 Concise Engineering Chemistry by N. Geol & S. Kumar 5th Ed 2019 Engineering Chemistry by S. S. Dara, 2004 Engineering Chemistry by H. K. Chopra & A Parmar, 2007 Physical Chemistry (5th Ed.) by P. W. Atkins, 11th Ed, 2017 Advance Inorganic Chemistry by Cotton & Wilkson, 6th Ed. 1999.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student should be able to:

S No	CLO Statement	PLO	Learning Domain and level	
1	 Comprehend the fundamental concepts of material science and engineering with focus on Internal atomic structure, crystal structures, crystal systems in metals, crystal imperfections, diffusion. Explain concepts of origin of mechanical properties and structure-property relationship. 		C2	
2	Concept and application of phase diagrams and TTT diagrams. Understand ferrous and non-ferrous alloys, their manufacturing processes, Heat treatments and surface treatments. Knowledge of polymeric, ceramic and composite materials, along with advanced materials (shape Memory Alloys rapidly solidified alloys)	1	C3	

ASSESSMENT SYSTEM:

Quizzes	10-15%
Assignments	5-10%
OHTs	30-40%
ESE	40-50%

TOPICS COVERED WITH THEIR CONTRIBUTION TO PLOS:

Week	Description	Ref Book		nt	No
No		Chapter Number	zzes	me	N O
		Number	Zuis	ign	CL
			Ŭ	Ass	
1-4	Atmospheric Chemistry: Atmospheric				
	composition, structure, temperature, and				
	pressure profile. Barometric Law for gases at				
	equilibrium. Ozone Layer, ozone hole, ozone				
	protection, and consequences of ozone depletion.				
	Environmental pollution.				
5-6	Electrochemistry:				
	Oxidation and reduction,				
	Faraday's laws of				
	Electrolysis,				
	Electrochemical series,				
	Electrochemical cells and				
	their types (Galvanic/				
	Voltaic cells, lead storage				
	battery, Zinc- Carbon dry				
	cell, Alkaline dry cell		02	01	18-7
7	etc), Fuel cells.		02	01	1&2
1	OH1-1		-		
8-9	Corrosion: Types of Corrosion, Electrochemical and				
	chemical corrosion, Composition cells, concentration				
	cells and stress cells, corrosion prevention; metallic				
	coating, non-metallic coating and cathodic				
	protection etc.				
10-11	Thermo-Chemistry: Chemical thermodynamic laws,				
	Enthalpy, Relationship between H & U, Hess's Law				
	of heat summation, Standard states of elements,				
	Physical state of Reactants & Products, Heat of				
	Reaction, Heat of Formation, Heat of Computition,				
	Exo and endomerning reactions, Activation energy,		00	01	100
	weasurement of near of reaction.		02	01	1&2

13	OHT-2			
12-13	Fuels & Combustion: Classification of Fuels:			
	Gaseous & Liquid fuels, Criteria for the			
	selection of fuels (Calorific value, Flash point,			
	Octane number, Cetane number and Adiabatic			
	Flame Temperature etc), Parameters of			
	lubricant quality (dropping point, viscosity			
	index etc).			
14-15	Polymers: Types of Polymers: Natural, Semi-synthetic			
	and synthetic polymers. Addition polymerization and			
	condensation polymerization. Thermoplastic and			
	thermosetting behavior, Homo-polymers, Copolymers,			
	Silicon polymers, electrically conducting polymer			
	(Polythiazyl).			
16	Chemistry of Engineering Materials: Different			
	grades of iron (Cast iron, Wrought iron, Steel), Ferrous			
	alloys, Nonferrous alloys, Copper alloys, Aluminum			
	alloys, Nickel alloys etc.			
18	END SEMESTER EXAMINATION			
		02	01	1&2